ViSAGe

Video-to-Spatial Audio Generation

ICLR 2025 (Extended version submitted to IJCV)

Jaeyeon Kim, Heeseung Yun, Gunhee Kim

A Novel Task

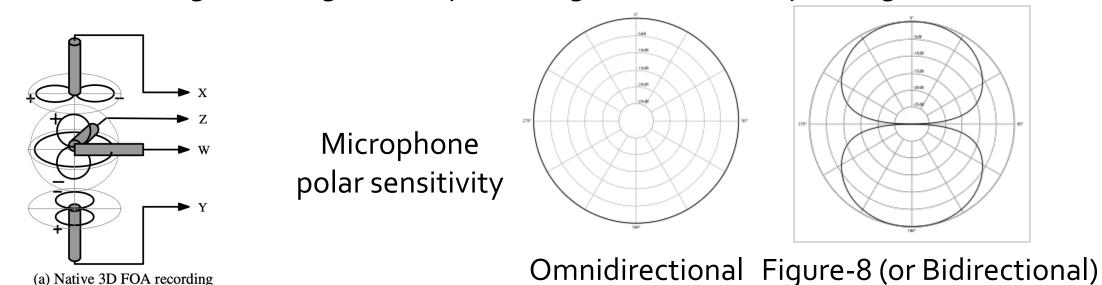
Can we generate spatial audio for videos?

Spatial audio is essential for immersive audio-visual experience

Spatial audio production is expensive Sound effects are often manually created (e.g., Foley synthesis)

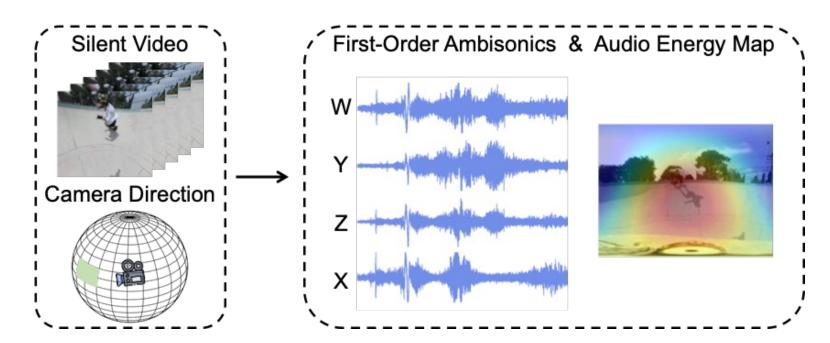
Spatial Audio → First-order Ambisonics (FOA)

- The most basic form of ambisonics (full-sphere surround sound format)
 - 3D surrounding sound format using first-order spherical harmonic decomposition
 - Four channels (W, X, Y, Z)
 - **W**: omnidirectional microphone at center
 - (X, Y, Z): figure-of-eight microphone aligned with corresponding axis



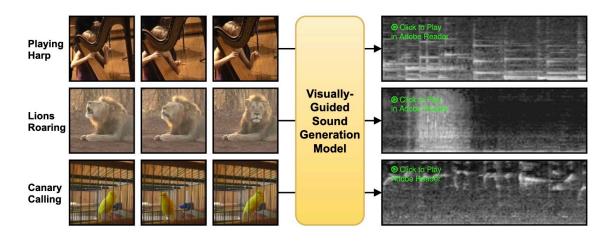
A Novel Task: Video-to-Ambisonics Generation

- Generate FOA given silent field-of-view (FoV) video + camera direction
 - FoV: wider application than panoramic videos
 - However, FoV alone lacks where visual event occur in 3D surroundings

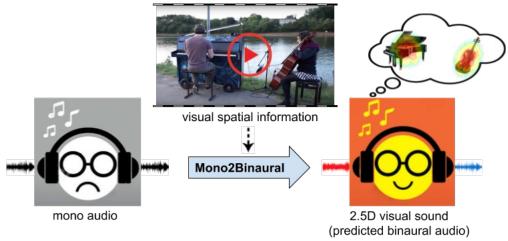


Prior Work

Can we generate spatial audio with existing approaches?



→ generates only mono audio



Audio Spatialization

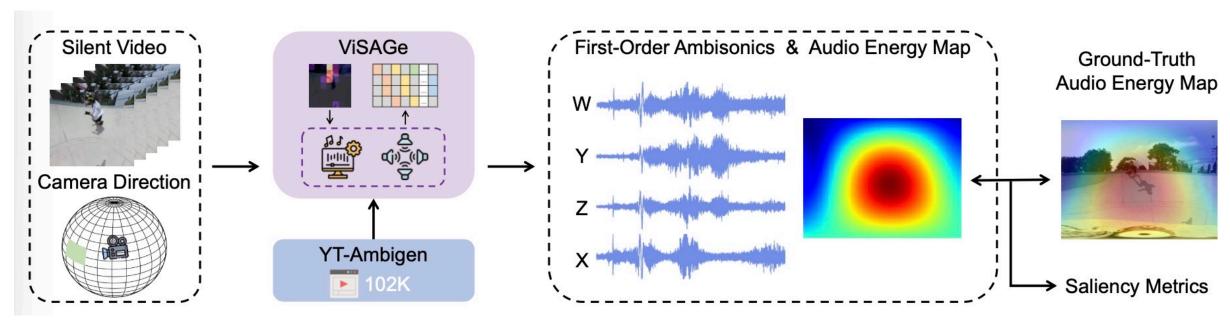
→ require reference mono audio

Combining both approaches may lead to inaccurate spatialization due to misalignment

V. Iashin et al., PAM:Taming Visually Guided Sound Generation, BMVC 2021 R. Gao et al., 2.5D Visual Sound, CVPR 2019

Contributions

- A novel task: Video-to-ambisonics generation
- A novel dataset: YT-Ambigen
- A novel model: ViSAGe
- A novel evaluation: a mix of semantic/spatial metrics



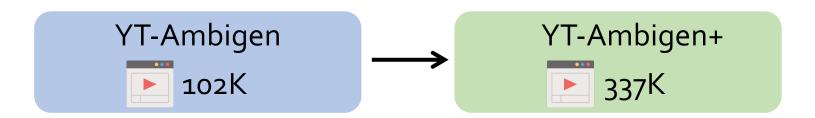
YT-Ambigen Dataset

- 102,364 5-sec clips with FOA and camera direction (ϕ, θ)
 - Sourced from 5.2K panoramic videos with FOA collected from YouTube
 - Existing datasets: No spatial audio or not suitable for audio generation

	Dataset	# Clips	Length	Audio Type	Audio Gen
Audio gen [VEGAS	28K	55h	Non-Spatial	V
but no		13K	24h	Non-Spatial	\checkmark
spatial VGGSound 2	200K	56oh	Non-Spatial	V	
Spatial but no audio gen	FairPlay	2K	5h	Binaural	×
	OAP	64K	26h	Binaural	×
	YT-360	89K	246h	FOA	×
	STARSS ₂₃	0.2K	7.5h	FOA	×
	YT- Ambigen	102K	142h	FOA	▼

YT-Ambigen+ Dataset (IJCV Extension)

- Harvest all accessible accessible panoramic videos with ambisonics
 - Filter invalid videos and apply similar post-processing to obtain 5s clips
 - Total **336584** clips, **19265** human validated test split
 - PaSST classification: top-1 labels cover 393/527 AudioSet labels and 930/1,000 ImageNet labels



Dataset	# of	Video	Video	Audio	All Spatial	Open	Audio
	Clips	Length	Type	Type	Channels	Domain	Generation
YT-Ambigen YT-Ambigen+	102K 337K	142h 468h	$\begin{array}{c} \text{FoV} \\ \text{FoV} \end{array}$	FOA FOA	✓ ✓	✓ ✓	

_ 3

Evaluation Metrics

- How can we evaluate the generated spatial audio?
 - Semantic metrics: the generated audio should convey the content
 - Spatial metrics: all channels should create a spatially coherent sound field

Semantic metrics

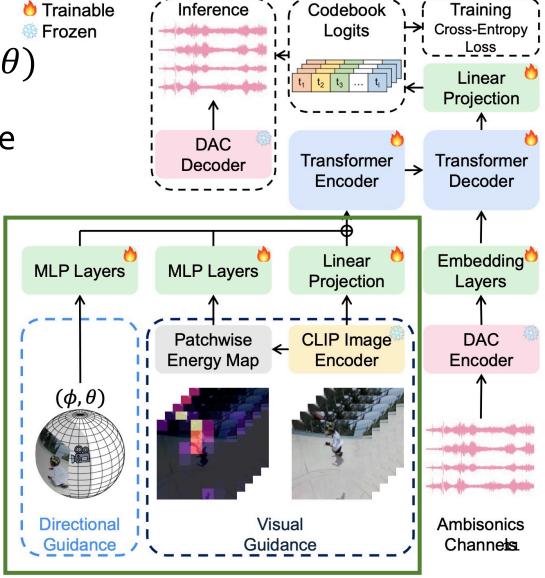
- Adopt two widely used Fréchet Audio Distance (FAD) and Kullback-Leibler Divergence (KLD)
- FAD: perceptual quality and fidelity of the generated audio
- KLD: KLD btw. the class distributions of the generated and reference audio (how effectively the generated audio captures the intended audio concepts)
- Computed **FAD**_{dec}, **KLD**_{dec} for decoded mono audio (from FOA)
- Compute the average of FAD_{avg} from each channel

Evaluation Metrics

- Spatial metrics
 - FOA can be used to generate an audio energy map over the sphere
 - Then compute visual saliency metric between generated and ground-truth audio energy map
 - Correlation Coefficient (CC) and Area Under Curve (AUC)

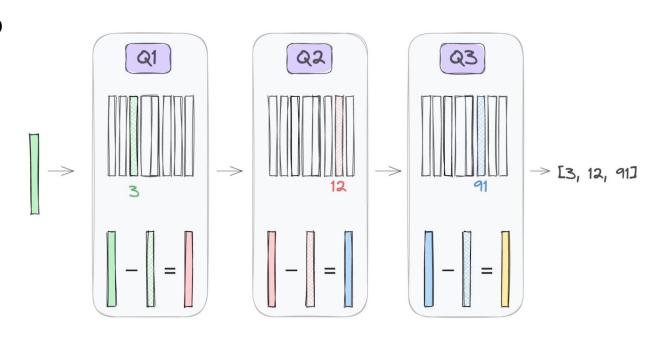
ViSAGe Approach – Encoding

- Generate FOA A=(W,X,Y,Z) for video frames V and a camera direction $D=(\phi,\theta)$
- Encoder-decoder Transformer architecture
 - Encoder: Visual features
 - Decoder: Neural audio codecs
- Conditional encoding
 - CLIP features: capture semantic content
 - Patchwise energy map: capture fine-grained spatial cues
 - Direction embedding: control overall spatial directivity



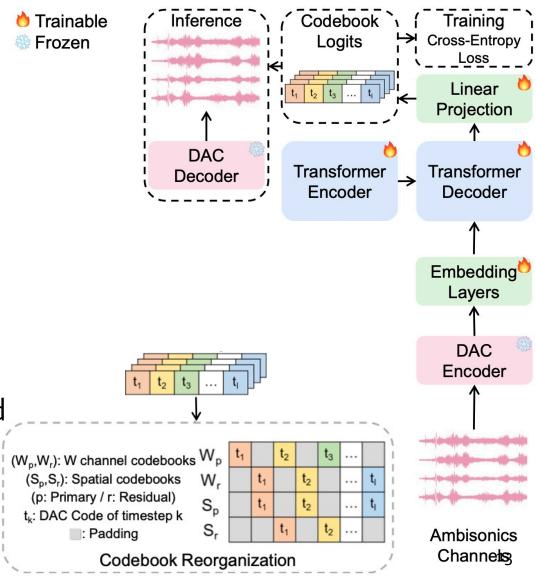
ViSAGe Approach – Decoding

- Descript Audio Codec (DAC) encoder
 - A SOTA neural codec for open-domain audio via residual vector quantization (RVQ)
- RVQ
 - Progressively finer approximation to high-dim vectors by a cascade of codebooks
 - The primary codebook: first-order quantization of the input vector
 - The residuals: further quantized using a secondary codebook



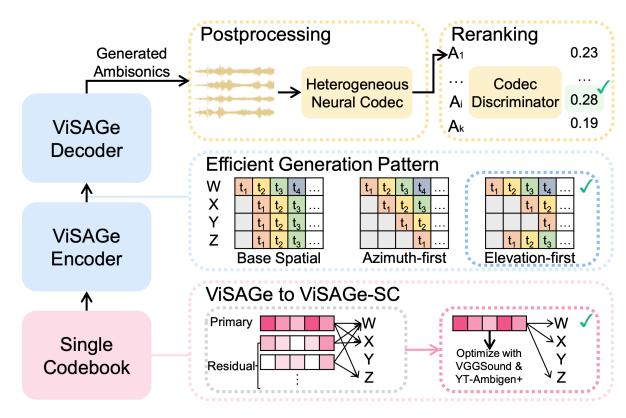
ViSAGe Approach – Decoding

- DAC encoder
 - Each FOA channel → an audio code matrix
- Code generation patterns
 - Better model both the spatial dependency and residual dependency (as later codebooks depend on earlier ones by RVQ)
- Training
 - The cross-entropy loss between the predicted codes and the GTs



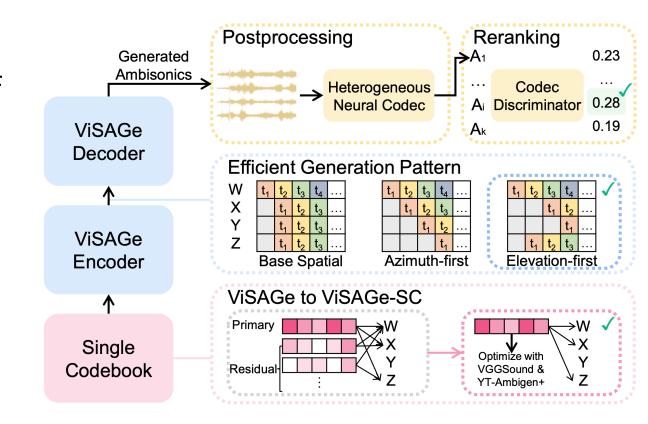
Efficient Generation with ViSAGe-SC (IJCV Extension)

- Core bottleneck of ViSAGe: RVQ codebooks of DAC
 - N *4 codes per timestep (N : # codebooks ~ 9)
 - High computation complexity and susceptible to artifacts
- ViSAGe-SC (Single codebook)
 - Let's use one codebook per channel!
 - 4 codes per timestep, but limitation in audio fidelity and quality
- How can we improve audio quality while using less codebooks?
 - 9× fewer codes per timestep, 4× faster training and 3-5× faster inference



Efficient Generation with ViSAGe-SC

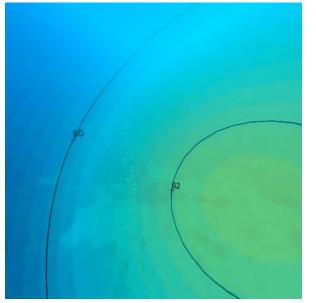
- 1. Better single codebook codec
 - Optimize UniCodec on both VGGSound and YT-Ambigen+
- 2. No more residual dependency!
 Let's generate codes efficiently
 - Reduce the generation length by half
- 3. Improvement after generation
 - Chaining heterogeneous codec
 - Candidate reranking

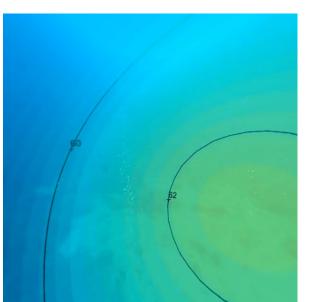


Y. Jiang et al., UniCodec: Unified Audio Codec with Single Domain-Adaptive Codebook, ACL 2025

Examples of Generated Sound

GT





ViSAGe

https://jaeyeonkim99. github.io/visage/

Experiments

- ViSAGe outperform two-stage baselines in both semantic and spatial metrics
 - Two-stage baselines: Video-to-audio generation + Audio spatialization

Model		Semantio	c Metrics	Spatial Metrics						
V2A	Spatialization	$FAD_{dec\;\downarrow}$	$KLD_{dec\;\downarrow}$	$\text{FAD}_{\text{avg}\downarrow}$		CC_{\uparrow}		AUC_{\uparrow}		
V 21 X	Spatianzation	111D dec ↓			All	1fps	5fps	All	1fps	5fps
Comparison to baseline models										
SpecVQGAN	Ambi Enc.	5.94	2.56	5.62	0.349	0.337	0.322	0.687	0.680	0.670
	Audio Spatial.	6.40	2.43	7.90	0.619	0.587	0.547	0.848	0.828	0.802
Diff follow	Ambi Enc.	5.68	2.60	5.53	0.349	0.337	0.322	0.687	0.680	0.670
Diff-foley	Audio Spatial.	7.24	2.51	8.76	0.577	0.537	0.494	0.826	0.803	0.777
ViSAGe (Directional)		5.56	2.01	4.76	0.721	0.671	0.624	0.890	0.864	0.839
ViSAGe (Directional & Visual)		3.86	1.71	4.20	0.635	0.584	0.531	0.846	0.819	0.790

Experiments

- ViSAGe-SC significantly outperforms ViSAGe
 - Single codebook < Residual codebook
 - Performance improves + (1) finetuning + (2) postprocessing + (3) augmentation
 - $5 \times$ faster in training and $3-5 \times$ faster in inference

	Sem	antic Metr		Spatial Metrics				-		
Model	$\mathrm{FAD}_{\mathrm{dec}}$	$\mathrm{KLD}_{\mathrm{dec}}$	$\mathrm{KLD}_{\mathrm{dec}}$ $\mathrm{FAD}_{\mathrm{avg}}$	E-L1	$^{ m CC}$			AUC		
			avg	Д ДТ	All	$1 \mathrm{fps}$	$5 \mathrm{fps}$	All	$1 \mathrm{fps}$	$5 \mathrm{fps}$
(a) Ablation from ViSAGe to ViSAGe-SC										
ViSAGe	5.72	2.56	5.35	-	0.418	0.378	0.335	0.731	0.711	0.687
w/ Single Codebook (2025)	5.83	2.43	10.66	-	0.492	0.438	0.369	0.786	0.757	0.719
w/ Single Codebook (Ours)	4.81	2.39	6.84	-	0.491	0.436	0.368	0.782	0.753	0.716
+ Postprocessing	4.25	2.47	4.83	-	0.488	0.435	0.368	0.781	0.753	0.717
+Rotation Augmentation	4.23	2.48	4.83	-	0.535	0.474	0.402	0.815	0.782	0.741

Experiments

- ViSAGe-SC outperforms all other models
 - Fall short in semantic metrics compared to MMAudio
 - → Promising future direction on enhancing semantic modeling for spatial audio generation

		Sem	antic Metr	rics \downarrow			Spatial I	$\overline{\mathrm{Metrics}_{\uparrow}}$			
Model		EVD KID	EAD	T7 T 1	\mathbf{CC}				AUC		
		$\mathrm{FAD}_{\mathrm{dec}}$	$\mathrm{KLD}_{\mathrm{dec}}$	$\mathrm{FAD}_{\mathrm{avg}}$	E-L1	All	1fps	$5 \mathrm{fps}$	All	$1 \mathrm{fps}$	$5 \mathrm{fps}$
(d) Comparison to Baseline Models											
$\overline{ m SpecVQGAN}$	Ambi Enc.	6.41	3.21	5.08	0.128	0.280	0.266	0.251	0.653	0.645	0.637
	Audio Spatial.	6.23	2.99	7.46	0.103	0.499	0.480	0.446	0.784	0.772	0.750
D'C D-1	Ambi Enc.	5.71	2.92	5.46	0.108	0.280	0.266	0.251	0.653	0.646	0.637
Diff-Foley	Audio Spatial.	6.61	2.85	8.82	0.104	0.469	0.447	0.411	0.763	0.749	0.727
${ m MMAudio}^*$	Ambi Enc.	5.21	2.36	2.99	0.197	0.280	0.266	0.251	0.652	0.645	0.637
	Audio Spatial.	$\bf 3.26$	2.29	3.95	0.109	0.503	0.485	0.452	0.788	0.776	0.754
ViSAGe-SC		4.23	2.48	4.83	0.106	0.535	0.474	0.402	0.815	0.782	0.741
ViSAGe-SC (Directional Guidance Only)		5.31	2.73	5.71	0.103	0.643	0.584	0.506	0.874	0.843	0.801

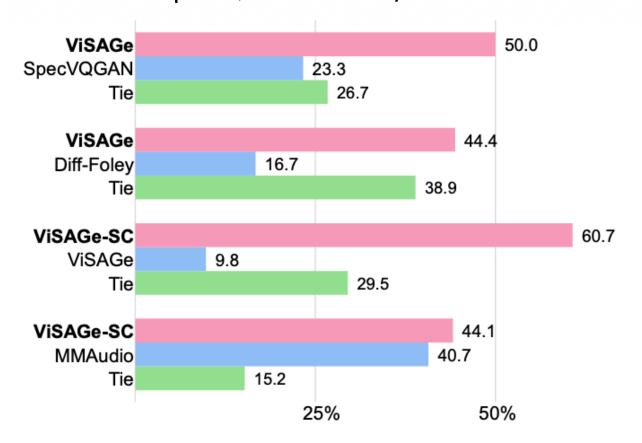
Qualitative Results

Human evaluation on two-sample hypothesis testing

A total of 16 participants, each evaluating up to 30 randomly selected videos

• The overall preference of two different samples (naturalness, relevance to the

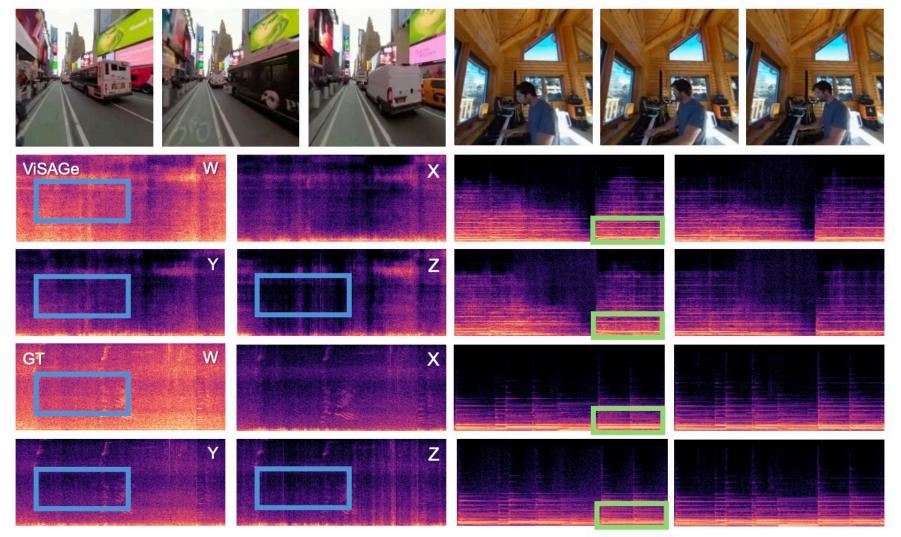
video, and the perceived spatial effects)



75%20

Qualitative Results

Linear spectrograms



Blue boxes: ViSAGe can capture differences btw. spatial channels

Green boxes: ViSAGe generates semantically plausible events

Qualitative Results

Audio energy visualization

GT

Baseline

ViSAGe

Takeaways

- Propose a new task and datasets of video-to-ambisonics generation
 - Introduce YT-Ambigen and evaluation metrics to support the task
 - Introduce YT-Ambigen+ with 3x larger in scale with a manually verified test set
- Propose a new method ViSAGe and ViSAGe-SC
 - ViSAGe outperforms two-stage methods in both spatial and semantic metrics
 - ViSAGe-SC achieves better performance, 4× faster training, and 3-5× faster inference compared to ViSAGe
 - ViSAGe to ViSAGe-SC: (1) better Single Codebook Codec,
 (2) efficient generation pattern, (c) postprocessing and Reranking

Project Page